Handy Dandy Stats Checklist: All you need to know from Stats for Metrics

Random Variables and Distributions

- 1. What are random variables (rv's)? distributions? probabilities? probability density functions?
- 2. ... characteristics/properties: Means, variances, covariances, correlations, independence, ...

Estimation: Gather data and estimate true underlying parameter values

- 3. Estimators v. estimates: Start with estimators (rules; random variables) ... gather data ... and generate estimates (what you get when you apply those estimator rules to Your data)
- 4. Example: Sample Mean estimator; random sampling from X (unknown: mean μ and variance σ^2)
 - a. ex ante: Independent random variables X_i 's iid X (You do remember iid? Yes?)
 - b. ex ante: Sample Mean Estimator (it's a random variable... until you have data!): $\bar{X}_n = \frac{1}{n} \sum X_i$
 - c. ex post (w/ data!): Estimated sample mean (remember all those sample statistics?): \bar{x}
- 5. LUEs: Linear Unbiased Estimators ... linear and unbiased
- 6. **BLUE**: Best Linear Unbiased Estimator ... minimum variance in the class of LUEs
- 7. Return to example: The Sample Mean estimator is a LUE, and also BLUE! So far, we've assumed random sampling from the same distribution, and finite mean and variance... that's it!
- 8. So far: No distributional assumptions! Nothing about whether X has a Normal distribution or ...

Inference: How did we do? How close is the estimate to the actual true parameter value?

9. Stay with the example: Now!... we need to make distributional assumptions! Assume $X \sim N(\mu, \sigma^2)$... given the other assumptions, we know the distribution of the Sample Mean estimator:

$$\overline{X}_n \sim N(\mu, \sigma^2 / n)$$
 ... and the standardized estimator: $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

- 10. But Wait! We don't know the variance σ^2 !
- 11. No problemo! Just estimate it with the Sample Variance, S_x^2 , which is an unbiased estimator of σ^2 . And then we can generate an estimate of the *standard deviation* of the Estimator, which we confusingly call the *standard error* $se = S_x / \sqrt{n}$... Why is stats so confusing?
- 12. Substitute your estimate, se, into the formula... and you have the t statistic, which has a t distribution with n-1 dofs: $\frac{\overline{X}_n \mu}{se} \sim t_{n-q}$... The Foundational Cornerstone of Inference:
- 13. I say again: The t statistic is The Cornerstone of Inference
- 14. *Confidence Intervals:* Interval Estimators.... bounds are Sample Means +/- a certain number of standard errors (*se*'s)... How many se's? Several. More precisely: Choose a Confidence Level and work with *The Cornerstone of Inference*, the t statistic and the t distribution with n-1 dofs.
 - a. Interpretation of CIs: If confidence level is C%, then C% of the random intervals generated in this fashion (with random sampling of the data), contain the true unknown parameter value, μ .
- 15. *Hypothesis Testing:* In metrics we are almost always testing Null: H_0 : $\mu = 0$. Use a two-tailed test. Reject if the sample mean is large in magnitude, far far away from 0. How far away? c se's (standard errors); so reject if $|\overline{x}/se| > c$. Where does c come from? Choose a significance level α , and use *The Cornerstone of Inference*. What's a good α ? 10%? 5%? 1%? You decide! ... but make it small!
- 16. Or better yet, compute the p value and reject if $p < \alpha$. Where do p values come from? Use The Cornerstone of Inference! $p = prob(|t_{n-1}| > |\overline{x} / se|)$, assuming H_0 : $\mu = 0$
- 17. Statistical significance: If we reject the Null Hypothesis that the true parameter value is 0 (at some significance level α), we say that our estimate is statistically significant (at significance level α).